DIB2J-01

DTC	P2237	Oxygen Sensor Pumping Current Circuit / Open (for A/F sensor) (Bank 1 Sensor 1)

CIRCUIT DESCRIPTION

Refer to DTC P2195 on page DI-185.

HINT:

This DTC is related to A/F sensor, although the caption is oxygen sensor.

DTC No.	DTC Detection Condition	Trouble Area
	A/F sensor circuit (bank 1 sensor 1)	HINT: Main trouble area • Open or short in A/F sensor circuit
P2237	Condition (a) and (b) continues for 5.0 sec. or more: (a) AF+ \leq 0.5 V (b) AF+ > 4.5 V	Open or short in A/F sensor circuit A/F sensor
	Condition (a) and (b) continues for 5.0 sec. or more: (a) $AF+-AF- \le 0.1 \text{ V}$ (b) $AF+-AF- > 0.8 \text{ V}$	A/F sensor heater EFI main relay

HINT:

- After confirming DTC P2195, P2196, P2237, use the hand—held tester or OBD II scan tool to confirm an output voltage of the A/F sensor (AFS B1 S1/O2S B1 S1) from the "DIAGNOSIS/ENHANCED OBD II/DATA LIST/ALL".
- The A/F sensor's output voltage and the short–term fuel value can be read using the OBD II scan tool or hand–held tester.
- The ECM controls the voltage of AF+ and AF- terminals of ECM to the fixed voltage. Therefore, it is
 impossible to confirm the A/F sensor output voltage without OBD II scan tool or hand-held tester.
- OBD II scan tool (excluding hand–held tester) displays the one fifth of the A/F sensor output voltage which is displayed on the hand–held tester.

WIRING DIAGRAM

Refer to DTC P0134 on page DI-50.

INSPECTION PROCEDURE

HINT:

Hand-held tester only:

The narrowing down the trouble area is possible by performing ACTIVE TEST of the following "A/F CONTROL" (A/F sensor, heated oxygen sensor or another can be distinguished).

Perform ACTIVE TEST by hand-held tester (A/F CONTROL).

HINT:

"A/F CONTROL" is an ACTIVE TEST which change the injection volume to -12.5 % or +25 %.

- Connect the hand-held tester to the DLC3 on the vehicle.
- (2) Turn the ignition switch ON.
- (3) Warm up the engine with the engine speed at 2,500 rpm for approx. 90 sec.
- (4) Select the item "DIAGNOSIS/ENHANCED OBD II/ACTIVE TEST/ A/F CONTROL".
- (5) Perform "A/F CONTROL" when idle condition (press the \leftarrow or \rightarrow button).

2003 TOYOTA TACOMA (RM1002U)

Author: Date: 456

Result:

A/F sensor reacts in synchronizing with increase and decrease of injection volume (+25 % \rightarrow rich output: Less than 3.0 V, –12.5 % \rightarrow lean output: More than 3.35 V) Heated oxygen sensor reacts in synchronizing with increase and decrease of injection volume (+25 % \rightarrow rich output: More than 0.55 V, –12.5 % \rightarrow lean output: Less than 0.4 V)

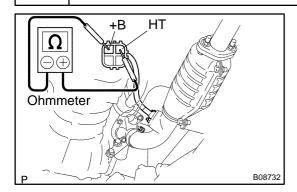
NOTICE:

However, there is a few second delay in the A/F sensor output. And there is about 20 seconds delay in the heated oxygen sensor.

	Output voltage of A/F sensor (sensor 1)	Output voltage of heated oxygen sensor (sensor 2)	Mainly suspect trouble area	
Case 1	Injection volume +25 % -12.5 %	Injection volume +25 % -12.5 %	_	
	Output voltage More than 3.35 V Less than 3.0 V OK	Output voltage More than 0.55 V Less than 0.4 V OK		
Case 2	Injection volume +25 % -12.5 %	Injection volume +25 % -12.5 %	A/F sensor (A/F sensor, heater, A/F sensor circuit)	
	Output voltage No reaction NG	Output voltage More than 0.55 V Less than 0.4 V OK		
Case 3	Injection volume +25 % -12.5 %	Injection volume +25 % -12.5 %	Heated oxygen sensor (heated oxygen sensor,	
	Output voltage More than 3.35 V Less than 3.0 V OK	Output voltage No reaction — NG	heater, heated oxygen sensor circuit)	
Case 4	Injection volume +25 % -12.5 %	Injection volume +25 % -12.5 %	Extremely rich or lean of the actual air–fuel ratio (Injector, fuel pressure,	
	Output voltage No reaction — NG	Output voltage No reaction — NG	gas leakage in exhaust system, etc)	

The following procedure of A/F CONTROL enable that to check its output (show its graph indication) of A/F sensor and heated oxygen sensor.

To display the graph indication. Select and push the "YES or NO" button 2 data "AFS B1S1 and O2S B1S2" or "AFS B2S1 and O2S B2S2" and press button "4" after selecting "ACTIVE TEST/ A/F CONTROL/USER DATA".


HINT:

Read frame freeze data using the hand-held tester or the OBD II scan tool, as freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.

2003 TOYOTA TACOMA (RM1002U)

1

Check resistance of A/F sensor heater.

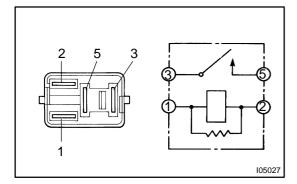
PREPARATION:

Disconnect the sensor connector.

CHECK:

Using an ohmmeter, measure the resistance between terminals +B and HT.

OK:


at 20°C (68°F)	$0.8-1.4~\Omega$
at 800°C (1,472°F)	1.8 – 3.2 Ω

NG

Replace A/F sensor.

OK

2 Check EFI main relay (Marking: EFI).

PREPARATION:

Remove the EFI main relay from RB No. 2.

CHECK:

Inspect the EFI main relay.

OK:

Condition	Tester connection	Specified condition
_	1 – 2	Continuity
Constant	3-5	No continuity
Apply B+ between terminals 1 and 2.	3-5	Continuity

NG

Replace EFI main relay.

OK

Check for open and short in harness and connector between ECM and A/F sen-
sor (See page IN–28).

NG

Repair or replace harness or connector.

οк

Replace A/F sensor.

2003 TOYOTA TACOMA (RM1002U)

Author: Date: 459