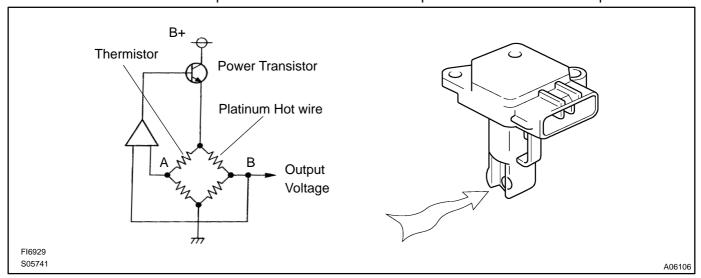
DI0RQ-13

CIRCUIT INSPECTION


DTC P0100 Mass Air Flow Circuit Ma	function
------------------------------------	----------

CIRCUIT DESCRIPTION

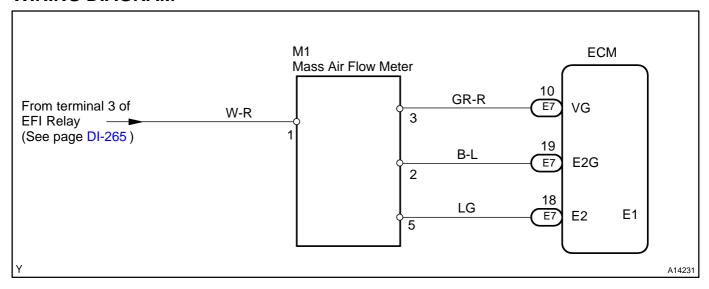
The mass air flow meter uses a platinum hot wire. The hot wire air flow meter consists of a platinum hot wire, thermistor and a control circuit installed in a plastic housing. The hot wire air flow meter works on the principle that the hot wire and thermistor located in the intake air bypass of the housing detect any changes in the intake air temperature.

The hot wire is maintained at the set temperature by controlling the current flow through the hot wire. This current flow is ten measured as the output voltage of the mass air flow meter.

The circuit is constructed so that the platinum hot wire and thermistor provide a bridge circuit with the power transistor controlled so that the potential of A and B remains equal to maintain the set temperature.

DTC No.	DTC Detection Condition	Trouble Area
	Open or short in mass air flow meter circuit with engine speed 4,000 rpm or less	Open or short in mass air flow meter circuit
	Open or short in mass air flow meter circuit with engine speed 4,000 rpm or more (2 trip detection logic)	Mass air flow meter ECM

HINT:


After confirming DTC P0100, use the OBD II scan tool or TOYOTA hand-held tester to confirm the mass air flow ratio from the CURRENT DATA.

Mass Air Flow Value (gm/sec.)	Malfunction
Approx. 0	Mass air flow meter power source circuit open VG circuit open or short
11.0 - 25.1 (Idling after warmed up)	• E2G (California Spec.), E3 (Except California Spec.) circuit open

2001 TOYOTA TACOMA (RM835U)

Author: Date: 424

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool, as freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.

1 Connect OBD II scan tool or TOYOTA hand-held tester, and read value of mass air flow rate.

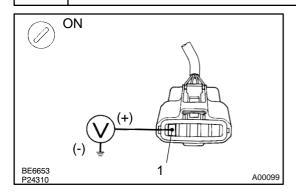
PREPARATION:

- (a) Connect the OBD II scan tool or TOYOTA hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the OBD II scan tool or TOYOTA hand-held tester main switch ON.
- (c) Start the engine.

CHECK:

Read the mass air flow rate on the OBD II scan tool or TOYOTA hand-held tester.

RESULT:


	Type I	Type II
Mass air flow rata (gm/sec.)	Approx. 0	11.0 - 25.1 (Idling after warmed up)
	Type I Go to step 2.	
	Type II Go to step 5.	

2001 TOYOTA TACOMA (RM835U)

Author: Date: 425

2

Check voltage of mass air flow meter power source.

PREPARATION:

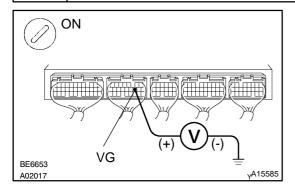
- (a) Disconnect the mass air flow meter connector.
- (b) Turn the ignition switch ON.

CHECK:

Measure the voltage between terminal 1 of the mass air flow meter connector and body ground.

OK:

Voltage: 9 - 14 V



Check for open in harness and connector between EFI main relay (Marking: EFI) and mass air flow meter (See page IN-28).

OK

3

Check voltage between terminal VG of ECM connector and body ground.

PREPARATION:

- (a) Remove the glove compartment (See page SF-54).
- (b) Start the engine.

CHECK:

Measure the voltage between terminal VG of the ECM connector and the body ground while the engine is idling.

OK:

Voltage:

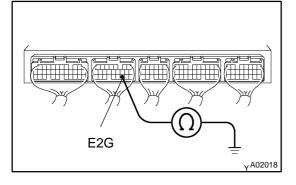
1.1 - 1.5 V (P or N position and A/C switch OFF)

ок

Check and replace ECM (See page IN-28).

NG

Check for open and short in harness and connector between mass air flow meter and ECM (See page IN-28).


NG

Repair or replace harness or connector.

ок

Replace mass air flow meter.

5 Check continuity between terminal E2G of ECM connector and body ground.

PREPARATION:

Remove the glove compartment (See page SF-54).

CHECK:

Check the continuity between terminal E2G and E3 of the ECM connector and the body ground.

OK:

Continuity (1 Ω or less)

NG

Check and replace ECM (See page IN-28).

OK

6 Check for open in harness and connector between mass air flow meter and ECM (See page IN-28).

NG

Repair or replace harness or connector.

OK

Replace mass air flow meter.