DTC	P0171	System too Lean (Fuel Trim)
-----	-------	-----------------------------

System too Lean (Fuel Trim)

CIRCUIT DESCRIPTION

Fuel trim refers to the feedback compensation value compared to the basic injection time. Fuel trim includes short-term fuel trim and long-term fuel trim.

Short-term fuel trim is the short-term fuel compensation used to maintain the air-fuel ratio at its ideal theoretical value. The signal from the A/F sensor is approximately proportional to the existing air-fuel ratio, and ECM comparing it with the ideal theoretical value, the ECM reduces fuel volume immediately if the air-fuel ratio is rich and increases fuel volume if it is lean.

Long-term fuel trim compensates for the deviation from the central value of the short-term fuel trim stored up by each engine tolerance, and the deviation from the central value due to the passage of time and changes of environment.

If both the short-term fuel trim and long-term fuel trim exceed a certain value, it is detected as a malfunction and the MIL lights up.

DTC No.	DTC Detection Condition	Trouble Area
P0171	When air fuel ratio feedback is stable after warming up engine, fuel trim is considerably in error on RICH side (2 trip detection logic)	 Air induction system Injector blockage Mass air flow meter Engine coolant temp. sensor Fuel pressure Gas leakage on exhaust system Open or short in A/F sensor (bank 1 sensor 1) circuit A/F sensor (bank 1 sensor 1) ECM
P0172	When air fuel ratio feedback is stable after warming up engine, fuel trim is considerably in error on LEAN side (2 trip detection logic)	 Injector leak, blockage Mass air flow meter Engine coolant temp. sensor Ignition system Fuel pressure Gas leakage on exhaust system Open or short in A/F sensor (bank 1 sensor 1) circuit A/F sensor (bank 1 sensor 1) ECM

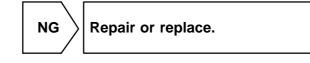
HINT:

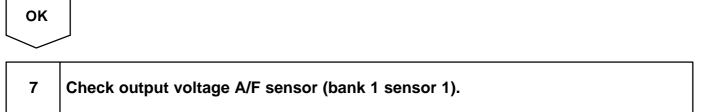
- When the DTC P0171 is recorded, the actual air-fuel ratio is on the LEAN side. When DTC P0172 is recorded, the actual air-fuel ratio is on the RICH side.
- If the vehicle runs out of fuel, the air-fuel ratio is lean and DTC P0171 is recorded. The MIL then comes on.
- If the total of the short-term fuel trim value and long-term fuel trim value is within ±35 % (80°C (176°F) or more), the system is functioning normally.
- The A/F sensor (bank 1 sensor 1) output voltage and the short-term fuel trim value can be read using the OBD II scan tool or TOYOTA hand-held tester.
- The ECM controls the voltage of the AFL- and AFL- terminals of the ECM to the fixed voltage. Therefore, it is impossible to confirm the A/F sensor output voltage without OBD II scan tool or TOYOTA hand-held tester.

• OBD II scan tool (excluding TOYOTA hand-held tester) displays the one fifth of the A/F sensor output voltage which is displayed on the TOYOTA hand-held tester.

WIRING DIAGRAM

Refer to DTC P0125 on page DI-42.


INSPECTION PROCEDURE


HINT:

Read freeze frame data using TOYOTA hand-held tester or OBD II scan tool, as freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.

1	Check air induction system (See page SF-1).		
	NG Repair or replace.		
ОК			
2	2 Check injector injection (See page SF-17).		
	NG Replace injector.		
ОК			
3	Check mass air flow meter (See page SF-24) and engine coolant temperature sensor (See page SF-42).		
	NG Repair or replace.		
ОК			
4	Check for spark and ignition (See page IG-1).		

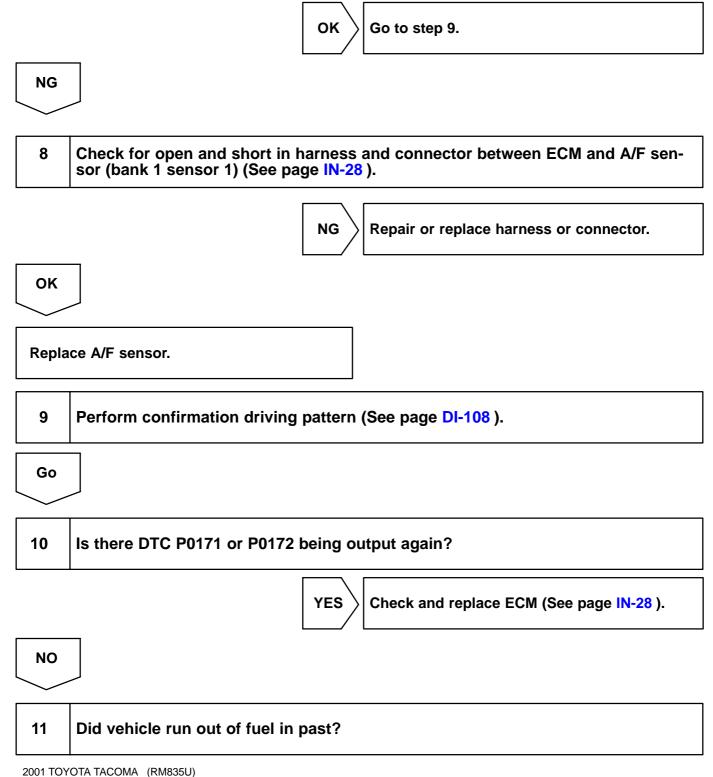
Date :

PREPARATION:

(a) Connect the OBDII scan tool or TOYOTA hand-held tester to the DLC3.

(b) Warm up the A/F sensor with the engine speed at 2,500 rpm for approximately 90 seconds.

CHECK:


Read the voltage value of the A/F sensor on the screen of the OBDII scan tool or TOYOTA hand-held tester when you perform all the following conditions. HINT:

The voltage of the AFL+ terminal of the ECM is fixed at 3.3 V and AFL- terminal is fixed at 3.0 V. Therefore it is impossible to check the A/F sensor output voltage at the terminals (AFL+/AFL-) of the ECM. **OK:**

Condition	A/F Sensor Voltage value
Engine idling	
Engine racing	 Not remains at 3.30 V (0.660 V*) Not remains at 3.8 V (0.76 V*) or more
Driving at engine speed 1,500 rpm or more and vehicle speed 40 km/h (25mph) or more, and operate throttle valve open and close	 Not remains at 2.8 V (0.76 V) of hidre Not remains at 2.8 V (0.56 V*) or less *: When using the OBDII scan tool (excluding TOYOTA hand-held tester)

HINT:

- During fuel enrichment, there is a case that the output voltage of the A/F sensor is below 2.8 V (0.56 V*), it is normal.
- During fuel cut, there is case that the output voltage of the A/F sensor is above 3.8 V (0.76 V*), it is normal.
- If the output voltage of the A/F sensor remains at 3.30 V (0.660 V*) even after performing all the above conditions, the A/F sensor circuit may be open.
- If the output voltage of the A/F sensor remains at 3.8 V (0.76 V*) or more, or 2.8 V (0.56 V*) or less even after performing all the above conditions, the A/F sensor circuit may be short.
- *: When using the OBDII scan tool (excluding TOYOTA hand-held tester).

Check for intermittent problems (See page DI-3).

YES

DTC P0171 or P0172 is caused by shortage of fuel.